Composition of (E,2)-summing operators

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Composition Theorem for Multiple Summing Operators

We prove that the composition S(u1, . . . , un) of a multilinear multiple 2-summing operator S with 2-summing linear operators uj is nuclear, generalizing a linear result of Grothendieck.

متن کامل

LIPSCHITZ p-SUMMING OPERATORS

The notion of Lipschitz p-summing operator is introduced. A non linear Pietsch factorization theorem is proved for such operators and it is shown that a Lipschitz p-summing operator that is linear is a p-summing operator in the usual sense.

متن کامل

On summing operators on JB * - triples

In this paper we introduce 2-JB*-triple-summing operators on real and complex JB*-triples. These operators generalize 2-C*-summing operators on C*-algebras. We also obtain a Pietsch’s factorization theorem in the setting of 2-JB*-triple-summing operators on JB*-triples.

متن کامل

REMARKS ON LIPSCHITZ p-SUMMING OPERATORS

In this note, a nonlinear version of the Extrapolation Theorem is proved and as a corollary, a nonlinear version of the Grothendieck’s Theorem is presented. Finally, we prove that if T : X → H is Lipschitz with X being a pointed metric space and T (0) = 0 such that T∣H∗ is q-summing (1 ≤ q <∞), then T is Lipschitz 1-summing.

متن کامل

Uniformly summing sets of operators on spaces of continuous functions

Let X and Y be Banach spaces. A set ᏹ of 1-summing operators from X into Y is said to be uniformly summing if the following holds: given a weakly 1-summing sequence (x n) in X, the series n T x n is uniformly convergent in T ∈ ᏹ. We study some general properties and obtain a characterization of these sets when ᏹ is a set of operators defined on spaces of continuous functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2003

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm159-1-3